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Yu. I. Selemeneva 

UDC 539.3 

We investigate the stressed-deformed state of cylindrical shells-panels with a local normal load. The state 

is constructed by matching solutions for approximate differential equations of the theory o~ shells. Such a 

procedure, which received the name asymptotic synthesis and which demonstrated its effeclivcness tn 

considering closed shells, made it possible to obtain simple formulas for maximum stresses and normal 

displacement. These formulas are compared with the solution constructed in the present article on the basis 

of the Vlasov- Donnell equations. 

Introduction. The calculation of cylindrical shells exposed to local force and temperature effects has 

received a sufficiently considerable amount of attention in the literature published at home and abroad. Significant 

results on this problem were obtained by P. P. Beilard f1 ] and V. M. Darevskii [2 ]. A considerable number  of 

more recent publications of other authors are given in [3 ]. Below, to calculate a shell-panel, we resort to ihc method 

of asymptotic synthesis (MAS) of the stressed state, which was formulated in [4 ] and developed in [51 for the local 

stressed state of closed cylindrical shells. 
1. Statement of the Problem, Solution of Resolving Equations. Let the dimension of a shell-panel along the 

generatrix be substantially larger than in the transverse direction. An external local normal load is distributed over 

the segment of the directional circumference (Fig. I) and can be represented in the form 

p (a, fl) R - I  (1) = q (/3) c5 (a - 0 ) ,  

where 

q (t 3 ) = ~ qn sin }'fl , },= rp t /0 .  (2) 
n = l  

The second multiplier in Eq. (1) is the Dirac function. Taking into account its integral representation 

d (a - 0) = ~ cos a2d2 
0 

and series (2), we write expression (1) as 

p (a, fl) = (TrR) -1 ~ qn sin ),fl ~ cos a2d).. (3) 
n = l  0 

According to the method of asymptotic synthesis [4 ], the stressed state of the shell at low numbers of the 

harmonics n can be represented, without introducing a perceptible error, by the sum of the ground state and the 

edge effect. The first of these is described by the semimomentless theory of shells, whose resolving equation, with 
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Fig. 1. Diagram of radial loading of shell-panel 

the assumption of a strong inequality 102~/0 f l21  >> I~1,  changes to the following equation, called the Schorer 

two-term equation [6 ]: 

_ _  2 0 8 ¢ b  R 2 04(I) -t- c - -  - p ( a ,  f l ) ,  ( 4 )  

OCt 4 Off 8 E h  

where c 2 = h2/(12(1 - rE)R2); ~ ( a ,  fl) is the resolving function. 

Displacements, stresses, and bending moments are related to the resolving function by the following 

differential relationships: 

o 04di ~ E h  04¢Ii ~ D O6dP 
w = r l  = = = = . ( 5 )  

Off 4 ' R Oct2Ofl 2 '  R 2 Off 6 ' 

Using this variant of the theory of shells, Odquist [7 ] proposed a simple formula for calculating the normal 

displacement of a closed shell under  the action of a concentrated force. 

The solution of Eq. (4), damping out when a --, +__ oo, is the function 

• (a ,  f l)  R ~ ~ cos a,,]. 
- qn sin ),fl 24 2 8 d,l. (6) 

~ E h  n=l 0 + c ~,' 

According to Eqs. (5) and (6), for normal displacement and force factors we find 

o R ~ 4 .~ cosct~ d~ 
w = q n 7  sinyfl  ).4 2 8 ' 

~ E h  n=l 0 + c 

o 1 ~ 2 7 R2cosa2  
TI = -- - -  qn Y sin yfl )t 4 2 8 

~ n = l  0 + c y  

(7) 

G~2_ D ~ 6 .~ cos a~. qn ~ sin ~fl - - - - -  dA 
z R E h  n= 1 0 24 4- c278 " 

We will confine ourselves to the analysis of these factors on the loading line a = 0, where they attain the highest 

values. Considering that [8 ] 

0 2 4 + c2~ ,8 
~v~2 - .~ d2 _ ~v~2 - 
v ~ y 2 '  2 8 6 '  4 0 2 4 + c ~  , 4c ,gZ y 

(8) 

we obtain, instead of expressions (7) simpler expressions: 

o R ~ -2 
w - qn 7 sin 7,8, 

(2c) 3/2 E h  n=l 

O 
T 1 --- 

1 ~ - 2  . 
qn Y sin yfl = z.., 

2 ~ / 2 c  n=l 
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1 ~ v v ' c R  q , G R 
- -  = ~ qn sin y/5 - - -  q (fl). (9) 
2 ~ / 2 c  2V"2 n=l 2v '2  

Here,  by virtue of the uniform convergence of series (2), we were able to contract the series in n for force factors 

to the function q ~ ) .  In the case of convergence in the mean, we obtain not the function q ~ ) ,  but ra ther  the Dirichlet 

function, which differs from the function q(/5) in the values at the discontinuity points. 

We will describe the s tressed-deformed stale of a simple edge effect by an equation generalizing the well- 

known equation for an axially symmetric edge effect [9 ]: 

34W ed 
_ _  + c -2w  ~ R4D -1 (10) = p 

Oa 4 

which is written for normal displacement of the shell-panel w ed = wed(a,/5). To this equation there correspond the 
force factors: ~2 d = - ( E h / n ) w  ed, G~I d =  --( O /  R2)o2 wed / oa 2, Ge2 d = V~ll d. 

For Eq. (10) it is easy to construct a solution damping with a --, ___oo by means of a Fourier  cosine t ransform 

and then to write integral representations of the desired factors. But there is no need for this, because such solutioas 

are well-known in the literature. So, using the results from [9 ], we write the values of the force factors on the 

loading line (a = 0): 

1 q ~ )  ~1 3 (1 v2 ) / V r ~ - ~  GId 1 . . . .  , = -qO ) 
2 4 ~/3 (1 - v 2) 

To. calculate the stresses and bending moments,  we apply the method of asymptotic synthesis  and obtain 

the formulas 

( o ,  = T z  ( 0 , / 5 )  = + = 1 

G I ( 0 , f l ) = G  2 ( 0 , f l ) = ~ + G ~ l  d = ( l  + v )  q ( / 3 ) ~ ( 4 f f 3 ( 1  - v  2 ) ) - 1 .  ( l l )  

Analysis of these approximate solutions shows that on the loading line the corresponding force factors are equal to 

each other and independent  of the apex angle of the panel O; they change along the contour of the shell in the same 

may as the external  load. 

For normal displacement of the edge effect we obtain 

ed R3 7 * cos a2 d2 
w (a, f l ) = - - q  (fl) Jl 4 -2  

JrD 0 + c 

or with allowance for integral (8) 

W ed (0 ,3)  -~- (2Eh (2c)1/2) -1 Rq* (/6). 

Now, from this formula and from the first formula of set (9) we find a total expression for the normal displacement: 

w(0,  fl) = w ° +  w ed (2Eh(2c) 1 / 2 ) - I R  q*(13) + c qnY sinyfl  . 
n=l 

In Eq. (12) q*~)  is a function that is as yet unknown. In [1, 2 ] this was taken to be ei ther  a zeroth harmonic 

(axially symmetric component) of a series in cosines, or a sum of a series up to the harmonic number  n*. In the 

case of a panel, the zeroth harmonic is absent.  The function q*(/5) is to be determined.  
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In order to estimate the reliability of approximate formulas (11) and (12), we will construct a more strict 

solution of the problem on the basis of the equations for the moment technical theory of shells, which, as is known, 

gives good accuracy in determining local stresses [ 10 ]. 
The Donnel l -Vlasov equations for a cylindrical panel have the form 

V8tl) + C -2  O4(1)/Oa 4 R4D -1 = p (a,/3) , W = V4(I ~, 

T 1 = - ( E h / R )  O4dP/Oa20fl 2 T 2 = - -  ( E h / R )  O4cl)/Oa 4 

G 1 = + v  V4(I~ G 2 = - ~ + - + - -  , v ~  V 4 ( l  "~, - -  ( 1 3 )  

Oa Oa 2 0/32 " 

The solution (damping with a ~ _ oo) of the resolving equationgiven in Eq. (13) can be easily constructed by the 

Fourier integral method. Using it as the basis and other relations from Eq. (13), we write expressions for the normal 

displacement and force factors on the loading line: 

w = ;rD qn sin },/3 02  + },2)2 d2 _ EhR__22 
n=l 0 A (~, y)  ' Ti = ~ D  n=l qn sin },/3 x 

7 ti(;~,y) d~ R ~ 7 gi(;t '}') (;~2+}'2)2 
X Gi = qn sin }'13 d2 (i = 1, 2) 

o a (~, }'1 ' -Y,,=1 o a O,  },1 ' 

A (,~., }') = (~2 + y2)4 + C-2,~4 tl (~., y) = }2 ~2 t2 (~., }') = ~4 

2 = }'2 g z O , } ' ) = ; t 2 + ~  ' , gz (a , } ' )  +v,~ z .  

(14) 

2. Transformation of Expressions for Force Factors. The improper integrals are calculated by the theory 

of residues: 

- , w --- ( 1 6 c 2 )  - I  

0 A (,t, 7) 4 v '7  72 }4 + oJ 

. . . .  _ }2) 1/2 
7 }'--2 ';!'2d'~'---" 7 j'4d~ YrC (}'44-O9)1'2 

o a(a,} ')  o a ( a , } ' ) -  } ,"+ ,o  ' 

I /2  

i / ,,/2 (~2 + 72)2 d,']. = }, (~2 4- d)~ _ 7~ (},4 /2 
4 

0 A (2, }') 0 a (,~, }') 4 ~  7 + w  

Substituting the values of these integrals into Eq. (14), we obtain the following series to determine the forces and 

moments by the Vlasov-Donnel l  theory: 

T 1 (0 , /3 )  = T 2 ( O , f l )  = 4 qn sin },/3, 
2v '7 ,  h n=l y + c o  

1/2 

qn sin 7ft. 

(15) 
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Here, just as in the method of asymptotic synthesis, we observe equality of the corresponding force factors, but 
their distribution over the angular coordinate fl differs from the distribution of the external load. If in the radicals 
the terms ),4 and )2 are neglected in comparison to w, then expressions (15) go over into Eq. ( 1 ) .  Consequently,  

the asymptotic synthesis method and the moment technical theory give close results for panels with a large apex 
angle 0 and a large radius-to-thickness ratio R/h. In order to satisfy ourselves of this, we will consider the action 

on the panel of a radial force P uniformly distributed over the segment fl E [ill ; f12 ]- In this case, the load density 
is described by the expression q(fl) = P/(fl2 - fll)R = consl and for calculation of the coefficient qn we have the 

relations: 

2P 1 f l 2 - f l l  fll +f12 
-- s i n ) , ~ v s i n ~  ~ o - - - -  ~ p - - -  qn nR~o n ' 2 ' 2 

Particular attention should be devoted to the case when the center of the loaded segment is equidistant 
from the edges of the panel, i.e., g, -- 0 /2 ,  since then the greatest stresses and displacements occur. Only odd 
harmonics remain in series (15). To calculate the force factors at the most stressed point (0, 0 / 2 ) ,  we obtain the 

following expansions 

T I (0, 0/2) = T 2 (0, 0/2) = - 
3(1 - v  2) vr2 -02 

4zr 3r/h 2 

_2 , 
P R  (74+('°)1/2 l / 2 x  -- sin yq, ; 

n=t 7 4 + c o  n 

G 1 (0, 0/2) = G 2 (0, 0/2) = - -  

/ 1 / 2  
1 + v  p ~ _~__ ( ( y 4 + a ) ) l / 2 +  r × l s i n 7 ~ o  ' 

2~ V°2- r] n=l~O y4 -f- o) r/ 

n =  1 , 3 , 5  . . . . .  oo, r/ = : q o / O .  

(16) 

For calculating stresses and moments at the same point the asymptotic synthesis method yields the closed solutions 

4~o ~[ Rh 

In order to obtain approximate closed solutions on the basis of the equations of moment technical theory, 
we apply a procedure that accelerate the convergence of series (10) and, therefore, resort to the Clauzen integral 

[111 

~ s i n ( 2 m + l ) r l = - l ~  ln( tan2)  dt, 71>_0. 
m=o (2m + 1) 2 2 o 

Expanding the integrand in powers of t and integrating, we obtain 

s in(2rn + l)r/  = 177 (In 2 + 1 1 2 ( 7 . . . .  r/ l + - -  
m=O (2m + 1) 2 2 ~ r/ 36 ~ 200 

~ s in (2m + 1 ) r /  = r/ ( 1 . 0 5 1 7 8 - - 1  2 

m=O (2rn + 1)4 L 12 r/ 

2 31 4) + - - ~  , 
17640 

i n 2 +  11 1 2 1 ) )  - r/ - - - r / 4  . 

r/ 6 120 7200 

(18) 

The accuracy of these formulas decreases with an increase in r/. In our case, 0 _< r/ _< ~ / 2 .  When r/ = ~ / 2 ,  

calculations by formulas (18) yield 
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~ sin ((2m + 1) ~r/2) = 091607 (091596) 
m=0 (2m + 1) 2 

~ sin ( ( 2 m  + 1) : r / 2 )  = 0 . 9 8 8 8 9  ( 0 . 9 8 8 9 4 ) .  
m=0 (2m + 1) 4 

The more accurate values (in brackets) are taken from the tables of the handbook [11 ]. As we see, in the 

indicated interval of values of r / formulas (18) ensure a good accuracy. Taking them into account, we reduce series 

(16) to the finite sums 

0, = 0, = 3 (1 -- 2 ) 0 2  PR ~ vr~ if_2 (~4 -F 0 9 ) 1 / 2  _ __ 1 !  ,~ 
T t 

4zr h 2 ~ ~o 3 n=l,3 .... )4 + co r]r/ ) 

( 2 
1 1 2 2 I1 r/ r/ 

x -- sin )'~o + 1.05178 - - -  r/ In - + - -  - - 
n 12 77 6 120 7200 

p ~ 1 (?/4 + (.0)1/2 + 1/2 l 

-- n= 1,3 .... ~ )4 + co 

1 1 2 ~__ 7 ~  31r/4 
x - - s i n ) ' ~ o  + - -  I n - - +  I - + + . ( 1 9 )  

n 2 r/ 36 200 17640 

Here the upper limit of summation N = 2 int (0oJl/4/(2sr)) + 3 depends on the relative thickness of the panel and 

its apex angle. The integral part of Owl/4/(2n) increases with increasing 0 and R/h .  
The closed solutions constructed for the equations of moment technical theory turned out to be more 

unwieldy than expressions (17) obtained on the basis of the asymptotic synthesis method. 

The results of calculations of the force factors by formulas (16), (17), and (19) are given in Tables 1 and 

2. The tables present the dimensionless magnitudes of the force tl = -2.nhT1 (0, O / 2 ) / ( ~ P )  and of the 

moment gl -- 4~rGl(0, 0 / 2 ) / ( ( 1  + v)P). The numbers in Table 1 are obtained at v = 0.3, 0 = n / 2  and at different 

values of R/h,  K = 0/(2,p). The terms for which n _< 2000 were retained in series (16). As K increased, the length 

of the segment over which load was applied decreased. The case K = 1 corresponds to loading of the panel over the 

entire arc of the directional circumference. 

Table 2 contains the values of q and gt calculated at v = 0.3, R/h  = 100, 0 -- n / 3 ,  and 0 = ~r/4, i.e., at 

smaller apex angles than in the first case. 

3. Transformat ion of Expressions for Normal Displacement. To calculate the normal displacement by the 

moment technical theory, we obtain a series: 

n ~ -2/ 
-" qn Y (e) sin )'/3, (20) 

w (0, 13) = (2c) 3/2 Eh n=l 

in whichf(e)  = [((1 + e2) 1/2 + e) / (1  + e 2) ]1/2, e = 4)'2c. 

If we assume that f(e) = 1, then series (20) coincides with the solution of the Schorer two-term equation. 

At small values of n the quantity e is small and f(e) is close to unity. Therefore, in the case of low numbers of the 

harmonics in Eq. (2) the terms of series (7) and (20) for normal displacement differ insignificantly from one another  

and, consequently, their partial sums are close. As n is increased, when e >> 1, the function f(e) has asymptotics:  

f(e ) N v'-2-/v~- = 1/()'d2--c), i.e., it tends to zero with n --- oo. As we see, the terms of series (7) and (20) have different 

rates of decrease at infinity, but this does not exert a fundamental  influence on the sums of the series in the case 

of their rapid convergence. The above analysis shows lhat solution (7) can be brought closer to solution (20) only 
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TABLE 1. Dimensionless Magnitudes of Force Factors tl and gl at Different Values of R/h ,  K, and N 

R / h  

25 

100 

400 

K 

1 

2 

3 

4 

5 

7 

I0 

I 

2 

3 

4 

5 

7 

10 

1 

2 

3 

4 

5 

7 

10 

N 

5 

11 

Formulas (19) 

II g l  

0.323 0.335 

0.539 0.703 

0.636 1.021 

0.685 1.275 

0.714 1.482 

0.744 1.803 

0.764 2.152 

0.155 0.155 

0.317 0.324 

0.446 0.516 

0.532 0.703 

0.590 0.874 

0.659 1.161 

0.710 1.490 

0.076 0.078 

0.153 0.154 

0.236 0.236 

0.315 0.321 

0.385 0.415 

0.492 0.612 

0.592 0.881 

t l  

0.323 

0.539 

0.636 

0.685 

0.714 

0.744 

0.764 

0.156 

0.317 

0.446 

0.533 

0.590 

0.659 

0.709 

0.078 

0.156 

0.237 

0.317 

0.388 

0.493 

0.590 

gl 

0.335 

0.703 

1.022 

1.275 

1.481 

1.802 

2.150 

O. 155 

0.323 

0.517 

0.705 

0.874 

1.158 

1.485 

0.078 

0.155 

0.234 

0.323 

0.419 

0.613 

0.874 

Formulas (I 6) Formulas (17) 

t l  = g l  

0.311 

0.622 

0.934 

1.245 

1.556 

2.178 

3.112 

0.156 

0.311 

0.467 

0.622 

0.778 

1.089 

1.556 

0.078 

0.156 

0.233 

0.311 

0.389 

0.545 

0.778 

TABLE 2. Dimensionless Magnitudes of Force Factors tl and gl at Different Values of O, K, and N 

Formulas (19) Formulas (16) Formulas (17) 
K N q 

1 

2 

3 

~ / 3  4 

5 

7 

10 

1 

2 

3 

4 

zc/4 5 

7 

10 

II g l  

0.240 0.235 

0.446 0.515 

0.564 0.790 

0.630 1.024 

0.670 1.220 

0.714 1.533 

0.744 1.876 

0.323 0.335 

0.539 0.703 

0.241 

0.446 

0.564 

0.630 

0.670 

0.714 

0.743 

0.323 

0.539 

gl 

0.235 

0.515 

0.791 

1.024 

1.219 

1.530 

1.872 

0.335 

0.703 

0.636 

0.685 

0.714 

0.744 

0.764 

1.021 

1.275 

1.482 

1.803 

2.152 

0.636 

0.685 

0.714 

0.744 

0.764 

1.022 

1.275 

1.481 

1.802 

2.150 

t l  = g l  

0.233 

0.467 

0.700 

0.934 

1.167 

1.634 

2.334 

0.311 

0.622 

0.934 

1.245 

1.556 

2.178 

3.112 
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TABLE 3. Values of the Functions f(ei) , fa(ei) at Different Values of ei 

ei f (ei) fa  ( e i )  ei f ( e i )  )Ca (el) 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

1.000 

1.046 

1.083 

1.110 

1.128 

1.138 

1.000 

1.042 

1.077 

1.105 

1.125 

1.138 

0.6 

0.7 

0.8 

0.9 

1.0 

1.140 

1.135 

1.126 

1.114 

1.099 

1,143 

1.141 

1.131 

1.114 

1.090 

by refining the terms of series (7) at small values of n. This can be done in the following manner .  Let us confine 

ourselves to the harmonic numbers  

1 
for which 0 < e _< 1. In this interval of values of e the function f(e)  can be approximated by the expression 

(21) 

fa (e) = 1 + 0.46e - 0.37e 2. 

The above approximation is obtained by the least-squares method. It gives good accuracy, as is evident from Table  

3. The table presents the values of the functions f(ei) and fa(ei) at the nodal points ei. Th e  error  remains smaller 

than 1%. 

Replacing f(e) by its approximation fa(e),  we obtain the following expression for calculating the partial sum 

of series (20) 

N N 
S ( 0 ; 8 )  = ~ qn7 -2  f (e) sin yfl ~ qny -2  " + 

n---I n= l  

( 74 + 1.84c Z 1 - g  ) qn sin 
n=l  

Here we can pass from the finite sum to the series only in the first term on the r ight-hand side of the equation. 

Having performed this operation,  we obtain, instead of Eq. (20), a simplified solution of the Donnell-Vlasov 

equations: 

w ( O ; f l ) -  R qn7 sin 7/6+ 1.84coj x ~ 1 - - ~ c ) , )  qnsinT/3 , to = 1 
Eh (2c) 3/2 n=l n=l 

Comparing it with expression (12), obtained previously by the synthesis method,  we find the desired function 

q*(fl), which is 

. N( 74 2) 
q (13) = 1.84 ~] 1 - ~ c y  qnsinTf l"  

n=l  

For this q* (/3) function, solution (12) coincides with the simplified solution of the equations in the moment  technical 

theory. But the simplified solution (22) itself will differ insignificantly from the exact one only in the case of rapid 

convergence of series (20). This is due to the fact that replacement of f(e) by fa(e) with a small er ror  is forseen 

only for n <_ N. This condition is met when the coefficients qn rapidly decrease with an increase in n, which occurs 

when effects are not highly localized. For highly localized (specifically, concentrated) loadings, solutions (20) and 
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(22) give close results only at a distance from the zone of loading. In the loading zone itself the series converge 

slowly and the correct ion suggested loses meaning. The  solution of the two-term equation gives values of 

displacements close to those from the Donnel l -Vlasov equations. 

Let us analyze the possibilities of the method of asymptotic synthesis on concrete results of calculations. 

First we will consider the action of a concentrated force P applied at a point with the coordinates (0, ~p). For this 

loading 

2P qn = ~ sin 7~0 (23) 

and we can sum the series in formula (22). Taking into account that [8 ] for fl _< g, 

-2  st2fl ( 1 - ~ - ) 2  0 (24) ~] n sin y~p sin yfl = 
r t = l  

while for fl > g,, they should change position in Eq. (24), to calculate the deflections from Eq. (22), we obtain 

w(O;fl)_ P (lfl(1-g'/O) +3.68w c 
Ell (2c) 3/2 ~1 W (l fl/O) -~ X 

× ~ 1 - 5-~ sin g~, sin when 
n = l  

Solution (25) is simplified when a concentrated force acts in the middle of the band (~ = 0 / 2 ) .  It gives a 

simple formula for calculating maximum deflections under  it. Assuming in Eq. (25) that ~o -- 0, fl = ~0 ~ 0 / 2 ,  we 

find 

( O )  POR3/2 (3 (1 -  v2))3/ 4 
Wma x = W 0; = 4Eh5/2 

This compact formula is convenient for estimating the maximum deflections of the panel. It has the same order  of 

accuracy as the Odquist formula [7 ] for a closed shell. 

The  calculation of the concentrated loading-induced displacements of the panel by the Donne l l -Vlasov  

theory according to Eqs. (20) and (23) is reduced to the series 

w (0; fl) - 2P ~ y-2 f (e) sin ~ sin yfl. 
g h 0  ( 2 c )  3 / 2  r t = l  

We simplify for a force acting in the middle of the band. Assuming that ~p = 0 / 2 ,  we find 

w (0;  t) - 2 p  ~ y -  (e)  c o s  - -  + 
Eh0 (2c) 3/2 n=t,3 .... 7 xf~-c 0 

C O S - -  , t ---- - -  - - / 6 .  

+ ~ n=i,3 .... 0 2 
\ / 

Here, the asymptotic behavior of the function fie) for e >> 1 is taken into account. The  first series in Eq. 

(26) converges very rapidly and in calculating its sum it is sufficient to confine oneself to a small number  of initial 

terms. The second series in Eq. (26) can be approximately summed by integrating the expression [8 ] 
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n c o s n x = - ~ l n  tan . 
n = l , 3  .... 

E x p a n d i n g  In ( tan x / 2 )  into series in powers of x and  per forming double  in tegrat ion,  we obta in  

/ _ 
x x 3 7x 2 31x 4 

S ( x )  = n - 3 c o s ( n x )  = 1.0517998 + In - ~ +  ~ 1 + ~ +  xg-TSW6! • 
n = l , 3  .... 

(27) 

The  accuracy  of this formula  is worsened  with an  increase in the variable x. In our  case 0 _< x < s~/2. W h e n  

x = z~2, it gives S O t / 2 )  = - 1.54- 10 - 5  ins tead of zero. As we can see, in the indica ted  interval of the values of  x 

the  e r ro r  of the  fo rmula  is smal le r  than  10 -4. Us ing  Eq. (27) ins tead  of ser ies  (26),  we obta in  the c losed 

approx imate  solut ion 

w (0; t) - 2 , '  ~ ~ , -2  ( O  cos  - -  + 
E h 0  (2c) 3 /2  n = l , 3  .... }1 0 

+ S ; M = 2 i n t  + 3 .  (28) 

It turns  out to be more  complex than  express ion (25) given by the me thod  of a sympto t i c  synthes is .  

Next ,  us ing two techniques,  we de te rmine  the deflections of a panel loaded  un i fo rmly  by a radial  force over  

a segment  of direct ional  c i rcumference.  In this case 

2P . /32 - /51  /31 +/52 (29) 
_ _  - -  • _ _  

qn - -  ~ R ~ o n  s i n  y~o sin ~ o ,  ~, = 2 ' ~/' - 2 

and  the sum of the  series in Eq. (22) can be expressed ,  as before,  in e l emen ta ry  funct ions .  To  calculate  def lect ions  

at  the center  of the  loading segment ,  i.e., a t /5  = ~p, we obtain  the formula  

E h  (2c) 3 /2  ~' 1 - - -~ ~o + 3.68o) ~-~ x 1 - ~-~ cy 2 -- 2 
=1 t/ ' 

This  formula  is simplified in the case of symmet r t i c  loading, when  ~p = 0 / 2 ,  and  takes the form 

w 0; - P ( 0 - ~ o ) + 3 . 6 8 c o - - q - c  x ~ l - - ~ c y  n ' 
E h  sr~o n= 1,3 .... 

Let us ana lyze  what  the momen t  technical  theory  gives in this case. Subs t i tu t ing  the values of qn f rom Eq. 

(29) into Eq. (20),  at fl = g, = 0 / 2  we find 

E h ~ q 9  (2c) 3 /2  n : l , 3  .... • ~ r/ 

X 

× sin 79' + n sin y~p . (31) 
d 2c ,=1,3  .... 

Next ,  we will pass f rom the series to finite sums.  In tegra t ing  express ion  (27),  we f ind 

F ( x )  = n s m n x  = x 
n = l , 3  . . . .  

2 ° 
.0517998 + - ~ -  l n - ~ - ~ - +  1 + 

31 + ~ x  4 
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TABLE 4. Dimensionless Magnitudes o f t h e  Normal  Displacement wl (0 ; t )  . . . . .  w4(0;t) at Different Values of R / h  

and t 

R / h  t wl(0; t )  w2(0;t) w3(0;t) w4(0;t) 

0 104.3 110.6 104.4 104.4 

25 0 /6  69.5 75.0 76.8 76.8 

0 /3  34.8 37.9 37.8 37.8 

0 834.0 858.3 834.0 834.2 

I00 0 /6  556.0 568.6 567.5 567.5 

0 /3  278.0 275.5 277.1 276.9 

0 6672.2 6774.4 6671.8 6676.4 

400 0 /6  4448.1 4440.6 4444.7 4446.3 

0 /3  2224.0 2224.4 2224.2 2224.7 

TABLE 5. Dimensionless Magnitudes of the Normal  Displacement ws, . . . ,  w8 at Different Values of R / h  and K 

R / h  K ws(0; 0/2)  w6(0; 0 /2)  wT(0; 0/2)  w8(0; 0 /2)  

25 

100 

400 

1 

3 

5 

7 

10 

1 

3 

5 

7 

10 

1 

3 

5 

7 

10 

52.1 

86.9 

93.8 

96.8 

99.0 

417.0 

695.0 

750.6 

774.5 

792.3 

3336.1 

5560.2 

6005.0 

6195.7 

6338.6 

56.8 

91.0 

97.5 

100.3 

102.4 

424.2 

715.2 

773.5 

798.2 

816.5 

3351.2 

5607.0 

6078.9 

6281.8 

6432.5 

56.5 

93.2 

99.3 

101.4 

102.7 

425.2 

717.4 

775.8 

798.5 

813.5 

3352.5 

5610.7 

6085.5 

6290.9 

6439.3 

56.5 

93.2 

99.3 

101.4 

102.7 

425.2 

717.4 

775.8 

798.6 

813.6 

3352.5 

5610.9 

6084.7 

6290.9 

6440.7 

does not exceed 10 -5.  Taking this error  into account, we t ransform Eq. (31) into the The error  of this formula 

approximate  closed solution 

w 0; = 2P 7 -2  (e) 1 1 × sin YT + - -  F . (32) 
EhJr~o ( 2 c )  3 / 2  n = l , 3  .... ) '  n 

Now we will analyze  the results of calculations presented in Table  4 and 5. They  were obtained at v = 0.3 

and 0 = n / 2 .  Table  4 contains dimensionless values of the displacements  wi(0; t) = Ehw(O; t ) /P,  i = 1 ; 4 calculated 

for different R/h  and t. The  calculation by formula (25) corresponds to i = 1; 2. When calculating the function 

wt (0; t), we assumed that  in it co = 0, i.e., we took only the solution of the Schorer two- term equation. When we 

calculated the function w2(0; t), we allowed also for the second term. This  corresponds to the corrected solution of 

the two- term equation based on the asymptot ic  synthesis method.  The  values of w3(0; t) and  w4(0; t) were obtained 

from formulas (26) and (28). In this case in the series we retained the terms for which n -< 201. A comparison of 

the values of wi(0; t) shows that the use of asymptot ic  synthesis  for a concentrated force gives good results only 
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far from the point of application of the external load, Deflections of a panel under a force are represented with high 

accuracy by a closed formula obtained by solving the two-term equation. Within the framework of the 

Donnell-Vlasov theory, the closed solution (28) gives high accuracy in a wide range of the values of R / h  and t. It 

allows us to avoid numerical summation of series (26). Table 5 contains dimensionless values of the displacements 

wj(0; 0/2) = Ehw(O; 0/2) ;  j = 5; 8. They were calculated at the center of the loading segment for different ratios 

R/h  and for K = 0/(2~o). The calculation by formula (30) corresponds to the values of the subscript j = 5; 6. To 

calculate ws(0; 0/2) in this formula, we assumed that w = 0, i.e., we took only the Schorer solution. The function 

w6(0; 0/2) was calculated with allowance for the contribution made by solution of the equation of a simple edge 

effect. The displacements WT(0; 0/2) and w8(0; 0/2) were calculated from formulas (31) and (32). In summing up 

the series in Eq. (31), we retained the terms for which n __< 201. 
Conclusion. The analysis of the results, presented in Table 1-5 for force factors and normal displacement, 

shows that the error of approximate formulas (19) is small in the entire considered range of the change in the 

parameters R/h  and K. The error decreases with a decrease in the length of the loaded segment. An opposite 

tendency is observed in the method of asymptotic synthesis of a stressed state, namely, the accuracy of formulas 

(17) depends substantially on the values of R/h  and K. The error does not exceed 15% for stresses when 

K < 0V'-RT-h 0/4 ,  or for bending moments when K < ~ 0/3. Thus, in the case of nonclosed shells too it is 

possible to use the simple formulas given by the asymptotic synthesis method for calculations over a certain range 

of parameters. This method brings the displacements calculated on the basis of the Schorer two-term equation closer 

to those obtained from the Vlasov-Donnell theory. The closed solution (32) is rather exact and allows one to avoid 

numerical summation of series (31). According to the Schorer theory, the transition from a concentrated force to 

loading distributed uniformly over the entire width of the band decreases the normal displacement by a factor of 

two. Deviations from this relation are also insignificant i n  calculations of displacements on the basis of the 

Donnell-Vlasov theory. 
The investigation was carried out partially under grant No. 2J300 from the International Science 

Foundation and the Russian Fundamental Research Fund. 

N O T A T I O N  

R, h, radius and thickness of shell-panel; E, v, elasticity modulus and Poisson coefficient of material; p, 

q, surface and linear loadings; P, force on portion of surface; 0, apex angle of shell-panel; a, fl, dimensionless 

coordinates;/3 l, f12, angular coordinates limiting loaded region; ~ ,  resolving function of problem; w, normal 

displacement; T1, G 1 , longitudinal stress and bending moment; T2, G2, annular stress and bending moment; 0, ed, 

subscripts indicating the reference of the desired factors to the ground state and to the edge effect, respectively; 

m, n, integer-valued parameters of summation; a, approximation. 
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